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Thermal cellular convection in rotating rectangular boxes 
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(Received 28 October 1980 and in revised form 12 May 1981) 

The thermal cellular convection in rotating rectangular boxes has been investigated 
both theoretically and experimentally. In the theoretical analysis, a linear stability 
theory is used to calculate the stability behaviour and the configuration of the three- 
dimensional convection flow. The numerical results show that the rolls change their 
orientation for a Taylor number greater than 8 critical value. In the experimental 
investigation, the flow patterns were visualized by a special differential interferometer. 
The experimental results are presented in stability diagrams and interferogram series 
which demonstrate the influence of rotation as well as initial and boundary conditions 
on the convective flow. We found that the effects of the Coriolis force and those of 
centrifugal forces could be studied separately by the choice of different test fluids, 
e.g. nitrogen is good for the Coriolis-force effect while silicone oil is good for the 
centrifugal-force effect. 

When compared with experimental results, our theoretical model is shown to be 
good for fluids of small Prandtl number such as nitrogen gas. We also compare our 
results with the well-known asymptotic behaviour of the critical Rayleigh number and 
wavenumber. 

1. Introduction 
Thermal instabilities in horizontal fluid layers are of both practical and theoretical 

interest. In  the fields of crystal growth, geophysics and meteorology, the physical 
boundaries and the superimposed rotational motion play an essential role. In  the 
books of Chandrasekhar (1961) and Gershuni & Zukhovitskii (1976) and in the papers 
of Ostrach (1972), Oertel (1979, 1980) and Hophger, Atten & Busse (1979), the 
theoretical and experimental results are comprehensively presented. 

The onset of cellular convection in rectangular containers was treated theoretically 
by Davis (1967) and Catton (1970) and experimentally by Stork & Muller (1972). 
The influence of rotation on horizontal fluid layers was studied experimentally by 
Koschmieder (1967) and Rossby (1969). 

Theoretical results of the influence of convection in rotating fluid layers were 
determined by Chandrasekhar (1961), Veronis (1968) and Hunter & Riahi (1975). 
Sommerville & Lipps (1973) calculated three-dimensional cell structure. The atability 
behaviour was treated by Kuppers & Lortz (1969), Kuppers (1970) and Clever & 
Busse (1979). The influence of vertical boundaries on cellular convection in rotating 
systems has been investigated theoretically by Davies-Jones & Gilman (1971) and 
Gilman (1973) for a circular annulus. Homsy & Hudson (1972) calculated the 
stability behaviour in a cylindrical container. The influence of the centrifugal force 
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FIGURE 1. Rectangular annulus geometry with rotation axis. 

has been investigated both theoretically and experimentally by Torrest & Hudson 
(1974)) Abell & Hudson (1975) and Hudson (1970). Homsy & Hudson (1971b) showed, 
with an asymptotic theory, that the centrifugal circulation stabilizes the layer 
everywhere except near vertical boundaries, where it is slightly destabilizing. 

The known results from the literature are that rotational effects have in some cases 
a strong influence on convection flows. The following questions are treated in this 
paper. 

(i) What influence have the rotation and side boundaries (box geometry) on the 
convective stability and flow configuration? 

(ii) In  which region can the following physical model with the Boussinesq 
approximation be applied ? 

(iii) What behaviour have the asymptotic solutions for convection in boxes? 
We applied interferomet.ric measuring techniques for the visualization and quant,i- 

t,ative interpretation of convection flow in the investigation of cellular convection in a 
rotating system. The application of optical measuring techniques makes the use of 
rectangular containers necessary. Rectangular boxes have another advantage in that 
the convection rolls are oriented along the shorter side of the container, thereby 
minimizing the viscous drag. The influence of the Coriolis and centrifugal forces can 
therefore be investigated systematically. 

2. Theory 
2.1. Basic equations 

The conservation equations for mass, momentum and energy are expressed in Bous- 
sinesq form. A linear relat,ion between density and temperature is used. Extensive 
descriptions of the Boussinesq approximation are given by Spiegel & Veronis (1960) 
and Gray & Giorgini (1976). Figure 1 shows the rectangular box with the Cartesian 
co-ordinate system and the vertical rotation axis. The dimensionless variables are 
found by using h,, hz/K, TI - T,, pvK/h$ as the scales for length, time, temperature and 
pressure. The dimensionless linearized perturbation equations are 

v . v  = 0, 

Av + RaT* e, - Ta*(e, x v) - Vp* = 0, 

AT*+w = 0, 
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with the two non-dimensional parameters, the Rayleigh number Ra and the Taylor 
number Ta, given by 

4w2h: 
VK v2 - , T a = -  (2.4) 

Ra = gC&(T1- T,) 

In the above K is the thermal diffusivity, v the kinematic viscosity, a the thermal 
expansion coefficient, h, the height of the convection box, Tl and T2 the temperatures 
a t  the lower and upper horizontal plates respectively, w the angular velocity and e, 
the uxit vector in the vertical direction; T* andp* are the perturbation temperature 
and pressilre and v the relative velocity, which together describe the deviation from 
the basic heat conduction state. 

In  this physical model, we have neglected centrifugal effects as a consequence of the 
Boussinesq approximation. Essentially we accept the argument given by Greenspan 
(1968), that is, we assume centrifugal acceleration is very small compared with gravity, 
which requires 

where r is a mean radius. Then temperature and density in the basic state are functions 
of height only and the centrifugally induced circulation is very small and negligible 
compared with the convective instabilities. 

The horizontal and vertical boundaries of the rectangular box are assumed to be 
rigid and perfectly conducting. The boundary conditions are 

w2rlg Q 1, (2.5) 

for x =  +&Hx, y =  &+H,, z =  &+, 
T* = 0 

in which H, = hx/h, and Hy = h,/h, ar.2 the dimensionless length and depth of the 
box. 

2.2. Calerkin method 
A Galerkin method has been used to solve the linear Boussinesq equations (2.1)-(2.3) 
with the boundary conditions (2.6). For convection flow the application is described 
by Finlayson (1968) and Gershuni & Zukhovitskii (1976). The velocity field of 
cellular convection in rotating rectangular boxes is three-dimensional. We also assume 
that the velocity field should be divergence free. The continuity equation is thereby 
exactly satisfied and the pressure can be eliminated from the equations through the 
stream-function formulation. The velocity field is chosen so that the properties of the 
differential equations and the boundary conditions me satisfied. The three-dimensional 
velocity field is found by superposition of two planar motions in the following form as 
described by Davis (1967) and Catton (1970): 

N 

j = 1  
v = E alvl(x, y ,  z), v1 = vI1 + vW = curl (e, $& + curl (ex $,), (2.7) 

N 

$j and $1 are stream functions in the (x ,  2)- and (y, 2)-planes. This approximation was 
compared by Frick & Clever (1980) with a general three-dimensional representation 
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FIGURE 2. Critical Rayleigh number as a function of the Taylor number. H ,  and H ,  are 
dimensionless lengths in the 2- and y-directions. H,, = 4. 

BOX H ,  = 10, H,, = 4 Infinite layer - F 

0 1815.2 3.14 1707.8 3.117 
T a  RaC a, RaC a, 

1 02 1861-6 3.14 175643 3.15 
lop 2277-4 3.46 2 151.7 3.50 
1 04 4918-0 5.50 4713.1 4.80 
106 17 268.8 7.07 16721.0 7.20 

TABLE 1. Critical Rayleigh and wavenumbers, box H, = 10, H ,  = 4 
compared with the infinite layer from Chandrasekhar (1961). 

of the toroidal and poloidal vector field in the case of both free and rigid upper and 
lover boundaries with rigid side walls. They found that the critical Rayleigh number 
of the approximation used here does not differ substantially from the general three- 
dimensional results, especially for our aspect ratio. The functions for the perturbation 
temperature are assumed to be scalar, so that they are directly proportional to the 
vertical velocity. In  the calculations, the number of trial functions N used is always 
112. 

The orthogonality relation requires the following Galerkin equations : 

(2.10) 

The equations (2.9) and (2.10) represent a linear homogeneous system of algebraic 
equations for the 2N unknown coefficients uj and bj .  For a given Taylor number and 
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FIGURE 3. Eigenfunctions in terms of streamlines. 9 = constant in the (2, 2)-plane; $ = constan€ 
in the (y, %)-plane. (a) Ta = 0, Ra, = 1816; (b) Ta = 1@, Ra, = 2277; (c) Ta = 2 x lo', 
Ra, = 0866. 

for certain Rayleigh numbers only this system has a non-trivial solution. The smallest 
eigenvalue is the critical Rayleigh number. The formulation of the trial functions 
and the reduced eigenvalue problem are described in the appendix. 

2.3. Numerical results 

(a)  Om& of cellular convection. The stability behaviour of this linear theory refers 
to the onset of cellular convection when the periodic convection superimposes itself 
on the steady heat conduction state. In  figure 2 the critical Rayleigh numbers are 
plotted a8 functions of the Taylor number. The individual curves are distinguished by 
the geometry of the rectangular box. The ordinate with Ta+ 0 gives the limiting case 
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FIGURE 4. Velocity distribution in a convection roll. v1 = (u, 0, wl) flow 
in the (5, 2)-plane; V, = (0, V ,  wa) flow in the (y, 2)-plane. 

rotation. The critical Rayleigh number increases as the size of the box 
decreases. The influence of the side walls has a stabilizing effect because of the addi- 
tional viscous shear. The onset of convection occurs at larger critical Rayleighnumbers. 
With the superposition of rotation which is characterized by the Taylor number, the 
critical Raylei& number increases further. This effect results from the action of the 
Coriolis force perpendicular to the direction of the relative velocity, which dampens 
the onset of convective instabilities. However, with increasing Taylor number the 
box geometry has a lessening influence on the critical Rayleigh number. Therefore, 
the stability curves converge for large Taylor numbers. With increasing Taylor 
number the influence of the Coriolis force increasingly dominates that of the side walls. 
In  table 1 the critical Rayleigh numbers for the box with H, = 10, Hv = 4 which is 
investigated in the experiments, is compared with the critical Rayleigh numbers for 
horizontal layers without side walls. 

For Taylor numbers Tu > lo5 the stability curves change into the asymptotic 
solution, whose gradient is proportional to 8 the power of the Taylor number. For the 
limiting case Tu + co the convection flow is suppressed, provided the Rsyleigh number 
Ra is finite and fixed. 

( b )  Convective $ow structure. The eigenfunctions describe the solutions for the 
velocity and temperature fields which have been determined from the eigenvalue 
problem with the exception of one constant. From both of the partial solutions, which 
yield by superposition the three-dimensional velocity field, the stream functions are 
plotted in figure 3. The convection movement resulting from the stream function @ 
in the (2, 2)-plane for Tu = 0 is graphed in figure 3 (a). In  the (y, 2)-plane no movements 
exist. The convection movement has the two velocity components u and wl, which are 
dependent on all three co-ordinates. With increasing Taylor number the influence of 
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FIGURE 5. Eigenfunctions of the convective flow, lines of constant vertical velocities in the 
(2, y)-plane. (a) Ru, = 1816, Ta = 0; (b) Ra, = 2277, Ta = 1P; ( c )  Ra, = 6855, Tu = 2 x lP. 
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FIQURE 6. Amplitude of the three-dimensional vertical velocities normalized with wn. 
(a) Rae = 1816, Tu = 0 ;  ( b )  Ru, = 2277, Ta = 10s; ( c )  Ru, = 6856, Ta = 2 x lW. 
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FIGURE 7. Comparison of theoretical results, box H ,  = 10, Hw = 4. The structure of w(x, y), 
Rae = 2341, Ta = 108. (a) Gslerkin method, linear theory; (b )  finite-difference method, non- 
linear theory, Pr = 0-7. 

the Coriolis force in the (y,z)-plane becomes visible as shown in figure 3(b ) .  This 
movement haa the velocity components w and w2 resulting from the stream function qi 
in the (y,z)-plane. The superposition of the flow in the (x,z)-plane and (y,z)-plane 
gives the three-dimensional flow field as shown in figure 4. 

The velocity component w is linked to  the u velocity component because of the 
Coriolis force. For a Taylor number Ta > 1500 in the box with H, = 10 and Hy = 4 
the velocity component v becomes bigger than u and movement in the (y, 2)-plane is 
preferred by the periodic motion. The flow then develops as shown in figure 3 ( c )  for 
Ta = 2 x lo4. 

Figure 3 shows the decreasing wavelength with increasing Taylor number. The 
dimensionless wavenumber as function of the Taylor number is graphed in figure 15 
with the experimental results. The asymptotic solution of the dimensionless wave- 
number which is proportional to the 6 power of the Taylor number can be 
predicted using the linear stability theory. Lines of constant vertical velocities are 
plottedin figure 5.  The dimensionless velocity is normalized to the value 1. In  figure 5 (a) 
the convection movement is graphed in the (2, 9)-plane for Ta = 0. The 10 convection 
rolls in the box of length H, = 10 are oriented parallel to the shorter side. With 
increasing Taylor number the influence of the Coriolis force becomes visible. The 
movement in the (y, 2)-plane is induced by the Coriolis acceleration. Eleven convection 
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FIGURE 8. Experimental set-up : differential interferometer and convection box. 

rolls can be seen at the Taylor number Ta = lo3 in figure 5 (b). The rolls are oriented 
parallel to the longer side of the rectangular box with H, = 10, Hv = 4 for Ta > 1500. 
The flow then develops as shown in figure 5 ( c )  for Ta = 2 x lo4. The Taylor number 
at which this cell orientation changes, increases as the size of the rectangular box 
decreases. These cell structure changes were discussed by Gilman (1973), but with his 
special eigenfunctions it was not possible to show this effect. 

The three-dimensional eigenfunctions are plotted in figure 6 for three different 
Taylor numbers. The vertical velocity distribution in the (2, y)-plane is shown in the 
box with H, = 10, Hv = 4. The flow structure is graphed in figure 6(a)  for the non- 
rotrting case. In the direction of the roll axis the vertical velocity increases mono- 
tonically from the boundary to the middle of the box. At the Taylor number Ta = lo3, 
as shown in figure 6(b ) ,  the amplitude of this velocity component is modulated by the 
influence of the Coriolis force. The cell structure changes with increasing Taylor 
number because of the Coriolis force as shown in figure 6 (c) for Ta = 2 x lo4. 

The theoretical model with the assumptions of the Boussinesq approximation and 
the restriction to the Coriolis force was proved by Oertel(l981) with a finite-difference 
method. The comparison of the flow structure resulting from both methods is shown 
in figure 7. The validity of the linear theory is restricted to the region near the critical 
state. 

3. Experiments 
3.1. Facility 

The experimental set-up is shown in figure 8. The differential interferometer is fixed 
on an optical bench. The test chamber is set on a rotating table. The convection box 
rotates inside a vacuum chamber insulating the thermal disturbances from the 
surroundings. A motor triggered camera registers the interferograms. The exposure 
time was chosen to be much smaller than the rotation time of the container. The 
experiments have been done up to a rotation rate of 150rev./min. The test chamber 
consists of a rectangular convection box of length H, = 10 and depth Hv = 4 with 
horizontal copper and vertical quartz glass plates. The lower horizontal surface is 
electrically heated aild the upper one has a thermostat-controlled constant tempera- 
ture. The temperatures were measured using thermistors. 
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p(T)  = 989 (1 - 0.00096T) (kg m-*) 

(K-? 
v(T)  = 294.81 x 10-6 exp ( -  2.0934 x 10-Yl') (ms 8-1) 

(W m-1 K-1) 
(J kg-1 K-1) 

a = 9.6 x 10-4 
h = 0.1691 
c = 1607.26 

(a) Silicone oil, M200, p = 1013 mbar, T in ("C) 

T 10 20 30 40 ("C) 
P ( T )  1-2061 1.1649 1.1263 1.0903 (kg m") 
v(T)  1.4170 1.6068 1.6976 1.6923 x (m* 8-1) 

a(T) 3.643 3-419 3.308 3.201 x lo-* (K-l) 
w.7 0.0248 0.0266 0.0264 0.027 1 (W m-1 K-l) 
c,(T) 1041.17 1041.17 104 1 *20 1041.30 (J kg-1 K-1) 

(b) Nitrogen, p = 1013 mbar 

TABLE 2. Test fluid properties. 

102 103 104 105 106  
Ta 

FIUWRE 9. Taylor number as a function of the rotation speed for 
the test fluids (a) silicone oil and (b) nitrogen. 

3.2. Teat fluids 
The test fluids used were silicone oil M200 with a Prandtl number Pr = 1780 and 
nitrogen with Pr = 0.7. The test fluid properties are tabulated as functions of the 
temperature in table 2. The corresponding Taylor numbers are graphed in figure 8.  
For the same speed of revolution the Taylor number in nit,rogen is larger than that in 
silicone oil by a factor of lo2. Owing to this the influence of the Coriolis and centrifugal 
forces can be studied approximately independently of each other. The square root of 
the Taylor number characterizes the influence of the Coriolis force in comparison with 
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FIGURE 10. Steady convection in silicone oil without rotation, box H ,  = 10, H ,  = 4. (a) Lines 
of equal vertical density differences, Ra = 6270. ( b )  Lines of equal horizontal density differences, 
Ra = 1912. (c) Principal sketch of the velocity distribution. 

the friction forces. The Taylor number and therefore the influence of the Coriolis 
force can be increased by choosing media with less viscosity. In  gases the influence of 
the Coriolis force dominates that of the centrifugal force. In gases, therefore, the 
theoretical assumptions are especially well satisfied. 

3.3. Measuring technique 
Differential interferometry was used to visualize the convective flow and to evaluate 
quantitatively the density profiles. The method is described by Oertel & Buhler (1978). 
The optical set-up is sketched in figure 8. The differential interferometer consists of 
two Wollaston prisms W, and W,, two objectives 0, and O,, the two polarizers P, and 
P,, the h/2 plate and the camera objective 0 giving an image of the test section on the 
film K. The light source Q is a high-pressure Hg lamp with a monochromatic filter. 
The interferometer is set on infinite fringe spacing. The components of density 
differences in direction of the interferometric beam separation are visualized. The 
differential interferometer can be made sensitive to horizontal or vertical density 
gradients by simply rotating the prisms around the axis of the objectives. 

Differential interferograms for the non-rotating case are shown in figure 10. The 
test fluid is silicone oil. In figure lO(a) the interferometer is adjusted with vertical 
beam separation so that lines of constant vertical density differences can be seen. Lines 
of constant horizontal density differences become visible with horizontal beam 
separation as shown in figure 10 (b). The heat conduction state in the vertical direction 
has been eliminated and the interference fringes look very like the streamlines. 
Figure lO(c) shows the principal sketch of the convection rolls. 

3.4.  Results in silicone oil 
Silicone oil is a very viscous medium. In the investigated region of the speed of rotation 
the Taylor numbers were of order of Ta = 10s. The tests were carried out so that for a 
constant Taylor number the Rayleigh number was quasi-statically increased. In 
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FIQURE 11. Influence of the rotation on the flow con&pration in 
test fluid silicone oil, (2, 2)-plane. 

4 

*I 

El 
x 3  
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10' 1 0' 1 0 3  

Ta 

FIQURE 12. Stability regions of the different flow configurations, 
test fluid silicone oil. 

figure 11 the flow configurations are shown symmetric to the rotation axis. On the left 
are shown the principal sketches of the flow and on the right the corresponding inter- 
ferograms. Lines of equal horizontal density differences are visible. Three different 
flow configurations, which are essentially the result of the centrifugal force, can be 
recognized. 

For smell Taylor numbers ten convection rolls were measured. The amplitude of the 
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FIGURE 13. Cellular convection at different Rayleigh and Taylor numbers, test fluid 
nitrogen. (a, b )  Steady convection; (c, d )  time-dependent convection. 
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FIQURE 14. Critical Rayleigh number as a function of the Taylor number for nitrogen. 0 ,  In- 
creasing Ra with Ta = constant, Biihler (1979) ; 0, increasing Ta with Ra = constant, Oertel& 
Kirchartz (1978) ; - , linear theory, box H ,  = 10, Hy = 4, Biihler (1979); - - -, analytical 
result, infinite layer, Chandrasekhar (1961). 

flow grows from the rotation axis to the side boundary through the influence of 
centrifugal force, but the buoyancy effect dominates. With increasing Taylor number 
the centrifugal force increases so that the flow pattern becomes more spacious. At a 
Taylor number Ta = 270, six convection rolls have been observed. At  Ta = 553, only 
the centrifugally driven basic flow can be seen. The x-rolls in the (x,z)-plane are 
slightly modulated by a periodic motion of y-rolls in the (y, 2)-plane. 

In  the stability diagram in figure 12 the different flow regions are defined. For 
Ta = 0 the critical Rayleigh number without rotation was measured. The destabilizing 
effect of the centrifugal force is the same as described by Homsy & Hudson (1971 b). 

These effects cannot be described in the physical model which underlies the linear 
stability theory of this work, because it neglects centrifugal force. The validity region 
is already exceeded for silicone oil for small Taylor numbers, as can be seen in figure 1 1. 

3.5. Results in nitrogen 
When the test fluid is nitrogen, the influence of the Coriolis force dominates that of the 
centrifugal force because the relative velocity in gases is greater by a factor of lo2. 
In  figure 13 the development of convection in nitrogen for two different Taylor 
numbers is illustrated by an interferogram series with lines of constant vertical density 
differences. Here, the optical path differences are significantly smaller than those in 
silicone oil. Only a few fringes can be visualized in nitrogen. 

In  figures 13 (a, b) the convection rolls in the (x, 2)-plane can be seen from the rotation 
axis in the middle of the box to the side wall. Figures 13(b), (d) show the convection 
rolls in the (y, 2)-plane, i.e. the view along the long side of the box. Figures 13 (a), (b) 
show the development of cellular convection a t  a Taylor number Ta = 1-09 x 109 
( = lOrev./min). The basic state of heat conduction is superimposed by cellular 
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convection. Because of the small centrifugal force, the flow is symmetrical to the 
rotation axis in the middle of the box. Eight x-rolls are formed, whose amplitudes 
increase with increasing Rayleigh number. The regions of the flow pattern can be 
recognized from the periodic interference fringes. In  an area of upward motion there 
are many fringes at the upper horizontal plate while, in an area of downward motion, 
they are at  the lower horizontal plate. In figure 12 (b), viewed from along the longer 
side of the rectangular box, a modulation along the axis of the convection roll can 
be observed. 

This process also appears in the non-rotating container as is shown in the papers of 
Oertel(l980) and Buhler, Kirchartz & Oertel(l979). In the critical state there always 
exists a modulation along the axis of the dominant convection rolls. At supercritical 
Rayleigh numbers steady x-rolls are dominant. In figures 13 (c), (d), the experimenis 
at the Taylor number Tu = 2.1 x lo4 ( II 50rev./min) can be seen. The cellular 
convection starts at substantially higher Rayleigh numbers. The flow is three- 
dimensional and time-dependent. This can be illustrated experimentally by the 
periodic wavy interference fringes in the (x, 2 ) -  and (y, 2)-planes. 

Time-dependent convection in rotating containers appears at Taylor numbers 
Tu > 1.5 x lo8, with H, = 10, H,, = 4 in the box investigated. This results from the 
non-existence of steady solutions in rotating fluid layers above a certain Taylor 
number. 

The physical model dc qcribed in 8 2.1 is very well satisfied when nitrogen is the test 
medium. Figure 14 shows the comparison of the theoretical and experimental results. 
The critical Rayleigh number is plotted as a function of the Taylor number. The solid 
curves give the result of the linear stability theory for the box. The dashed lines 
indicate the results of Chandrasekhar (1961) for infinite horizontal fluid layers. 
Together with the experimental results obtained by increasing the Rayleigh number 
and holding the Taylor number constant, are shown the results of Oertel (1978) and 
Oertel t Kirchartz (1979) for which the Taylor number was increased with the 
Rayleigh number held constant. The values of the critical Rayleigh numbers are 
independent of the way in which the experiments are carried out. Within the scope of 
the experimental accuracy the agreement between theory and experiments is very 
good. The Coriolis force has a significantly stabilizing effect. The values of measured 
and evaluated critical Rayleigh numbers agree also in the time-dependent region. The 
observation of this time-dependent convection flow is not identical with Chandra- 
sekhar’s (1961) oscillatory modes at low Prandtl numbers. Rather, it  is related to the 
non-existence of steady, stable finite-amplitude convection above a certain Taylor 
number. 

The stability calculations from Kuppers & Lortz (1969) have shown that no stable, 
steady convective flow exists if the Taylor number exceeds the critical value Ta = 2285 
for an infinite horizontal fluid layer, infinite Prandtl number and free boundary 
conditions. These calculations were extended by Kuppers (1970) to fixed horizontal 
boundaries and variable Prandtl numbers. He found that the critical value for Ta 
decreases with decreasing Prandtl number. For nitrogen as the test fluid with 
Pr = 0.71, the critical value is about Tu N 600. The value observed experimentally in 
the rectangular box of H, = 10, H,, = 4 is Ta 2: 1500. The difference can be explained 
by the effect of side walls, which have a stabilizing effect on the onset of a time- 
dependent flow. Above this Taylor number, and increasing Rayleigh number from a 
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FIGITFCE 16. Dimensionless wavenumber compared with experiments for nitrogen, box H, = 10, 
H, = 4. The symbols represent experimental data, the lines the theory. 0 ,  - - . -, 2-rolls; 
A, - - - -, y-rolls. 

mbcritical value, there is a transition from pure conduction to a time-dependent 
convective flow. 

Special features of the time-dependent behaviour of a convective flow in rotating 
systems with respect to  the calculations of Clever & Busse (1979) were investigated by 
Busse & Heikes (1980). The influence of the side boundaries in their extended fluid 
layer is less significant than in our rectangular box and therefore a direct comparison 
of the Taylor number above their time-dependent convection flow is not possible. 

Figure 15 shows the theoretical and experimental dimensionless wavenumbers as 
functions of the Taylor number. Convection rolls which are oriented along the shorter 
side of the rectangular box are dominated for Ta < 1-5 x 108 in the box with H, = 10 
and Hy = 4. The rolls orient themselves along the longer side at Taylor numbers larger 
than 1.5 x lo3. The theoretical results are plotted in figure 14 as the broken and dotted 
lines. The step functions result from the discrete number of rolls in the convection box. 
The number of convection rolls increases with increasing Taylor number. This effect 
can also be seen in the interferograms of figure 13 in the steady and time-dependent 
convection. The dimensionless wavenumbers for these experiments have been plotted 
in figure 15. The asymptotic behaviour a, - Tat of the theory is very well confirmed 
for an average wavelength in the (z,z)- and (y,z)-planes a t  the Taylor number 
Ta = 2.1 x lo4. 
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Biihler Niiler t Bisshop Chandrrtsekhar 
(1979) (1965) (1961) 

Geometry Box Fixed horizontal Free horizontal 
H ,  = 10, HI = 4 boundaries, infinite boundaries, infinite 

layer layer 
Taylor number 106 l@ -+a) 

C1 8.0 7.11 8-69 
c, 1.1 theory - 1.30 

0.8 experiment 

TABLE 3. Constants compared with that of the asymptotic solutions. 

4. Comparison with asymptotic solution 
Asymptotic solutions are known for steady convective flows and large Taylor 

numbers from the analytical theory of Chandrasekhar (1961), with the following 
results : 

The powers are determined by the differential equation of the eigenvalue problem. For 
infinite fluid layers with free horizontal boundaries the values are c1 = 8.69 and 
c, = 1.30. Niiler & Bishop (1965) calculated the c1 = 7.11 for fixed horizontal 
boundaries and for the intermediate Taylor number, Ta = lo6. Homsy & Hudson 
( 1 9 7 1 ~ )  shows that the asymptotic constants c1 and c2 do not depend on the 
boundary conditions or aspect ratio except when H,, Hv < 1. Our theoretical and 
experimental results for rotating rectangular boxes with H,, By > 1 confirm the 
asymptotic power laws. The constants c1 and c, determined from the theory and 
experiments are restricted to intermediate Taylor numbers of Tu 11 lo5. We find 
c1 = 8.0 for the stability behaviour from theory and experiments. The behaviour of 
the wavenumbers c, = 1.1 is obtained from the theory and c1 = 0.8 from the experi- 
ments. The difference could possibly arise as a result of the influence of the small 
2entrifugal effects in the experiments. These results are summarized together with 
previously published results in table 3. We find that the constants c1 and ca for 
intermediate Taylor numbers are smaller +!ban the correct asymptotic values predicted 
for Taylor numbers Ta -f 00. 

Ra,a  c1 Taf , ac+ c2Ta&. 

5. Conclusion 
The optical measuring technique has been successfully used for the direct obser- 

vation of the critical Rayleigh number and for the visualization and quantitative 
determination of the density field of the convection flow. The flow configuration in the 
form of cellular structure changes its orientation when the Taylor number is above a, 
certain critical value. The wavelength decreases as the Taylor number increases. 

In  our experiments, two test fluids are used: one is silicone oil which has a high 
Prandtl number and the other is nitrogen, which has a low Prandtl number. It has 
been found that the centrifugal force dominates in the case of fluid of high Prandtl 
number, e.g. silicone oil, and that the Coriolis force is dominant in the case of fluid with 
low Prandtl number. 
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In our physical model, a linear stability theory with Boussinesq’s approximation, 
the centrifugal force is neglected. Therefore, our theoretical model is applicable only 
to the convective flow of fluid with low Prandtl number. Our experimental results 
confirm this fact. Our experimental results of nitrogen agree closely with theoretical 
calculations for the stability behaviour and flow configuration in the region of stationary 
convective flow when T a  < 1500. When T a  > 1500, the convective flow is unsteady. 
We cannot predict the unsteady convective flow by our theoretical model. However, 
the theoretical results for the onset of convection can also be applied successfully to 
time-dependent convective flow. Further theoretical investigation of the time- 
dependent convective flow is needed. 

The authors wish to express their appreciation to Professor Dr-Ing. J. Zierep for 
valuable suggestions and stimulating discussions during the investigations. All 
numerical calculations have been done with the UNIVAC 1108 of the computer centre 
of the University of Karlsruhe. 

Appendix. Trial functions 

Reid (19581: 
For the velocity field we used the functions as they were described by Harris & 

Cpf(x) is an even function and Spj(x) is an odd function, both of which are equal to 
zero for x = f 4. The arguments Ap, and ppj  were so chosen that the derivatives of the 
functions are also zero for x = f #. For the temperature field thesimple trigonometrical 
function is sufficient. The Coriolis term always requires an odd function, while the 
convection motion without rotation can be described with both even and odd func- 
tions, depending on whether an even or odd number of rolls appears. 

Function system I 
With an odd number of rolls in the (2, 2)- and ( y ,  2)-planes, 

cos((2rj-l)nz), 

T& = - cos ( (2pj - 1) z) sin ( 2qj z) cos ((2rj - 1) nz). 
H z  
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Function system 11 

With an even number of rolls in the (x, 2)-plane and odd number in the ( y ,  +plane 

By exchanging the co-ordinates x and y an odd number of rolls can be also described 
in the (x, 2)-plane with this function system and an even number of rolls in the (y, 2) -  

plane. 
With these trial functions the integrals of the Galerkin equations (2.9)-(2.10) can 

be calculated according to the following relations, whereby the integrals comply with 
the elements of the matrices A, 8, C and D. 

The eigenvalue problem resulting from the Galerkin equations is solved numerically 
using the Hessenberg method and the computer program of Smith et al. (1976). 
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